

(12) United States Patent

Mudalige

US 8,676,466 B2 (10) **Patent No.:**

(45) **Date of Patent:**

Mar. 18, 2014

(54) FAIL-SAFE SPEED PROFILES FOR COOPERATIVE AUTONOMOUS VEHICLES

(75) Inventor: Upali Priyantha Mudalige, Troy, MI

Assignee: GM Global Technology Operations

LLC, Detroit, MI (US)

Subject to any disclaimer, the term of this Notice:

patent is extended or adjusted under 35

U.S.C. 154(b) by 593 days.

(21) Appl. No.: 12/749,678

(22)Filed: Mar. 30, 2010

(65)**Prior Publication Data**

> US 2010/0256835 A1 Oct. 7, 2010

Related U.S. Application Data

- (60) Provisional application No. 61/167,121, filed on Apr. 6, 2009.
- (51) Int. Cl. G06F 19/00

(2011.01)

(52)U.S. Cl.

USPC 701/93; 701/32.7; 701/33.6; 701/23; 701/54; 701/79; 701/110; 700/304; 370/252

Field of Classification Search

USPC 701/96, 23, 54, 79, 93, 110, 33.6, 32.7; 370/252; 700/304; 340/441

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

6 000 005		0/0000	T'1 1' 1 1 501/06
6,032,097	ΑŤ	2/2000	Iihoshi et al 701/96
6,804,580		10/2004	Stoddard et al 700/248
7,418,346	B2 *	8/2008	Breed et al 701/301
7,788,002	B2 *	8/2010	Yukawa et al 701/31.4
8,160,765	B2 *	4/2012	Morselli et al 701/25
8,417,412	B2 *	4/2013	Tominaga et al 701/32.7
2006/0095195	A1*	5/2006	Nishimura et al 701/96
2007/0083318	A1*	4/2007	Parikh 701/96
2009/0111652	A1*	4/2009	Reedy et al 477/107
2009/0222160	A1*	9/2009	Morselli et al 701/25
2009/0272608	A1*	11/2009	Bourqui et al 188/160
2012/0209505	A1*	8/2012	Breed et al 701/409

OTHER PUBLICATIONS

Lygeros et al., Design of an Extended Architecture for Degraded Modes of Operation of AHS, Jan. 1995, UC Berkeley.* Lygeros et al., Design of an Extended Architecture for Degraded Modes of Operation of AHDS, Jan., 1995, UC Berkeley.* Suwatthikul et al., Adaptive OSEK Network Management for Invehicle Network Fault Detection, 2007, IEEE.*

Primary Examiner — Thomas Black Assistant Examiner — Sara Lewandroski

(57)ABSTRACT

A method for controlling speed of a vehicle based upon control messages received through a communications device within the vehicle includes monitoring communication of control messages to a propulsion controller wherein control messages includes a speed profile including a current speed command representing instantaneous desired speed of the vehicle and future speed commands representing a predetermined controlled vehicle stop through a speed profile period, detecting anomalous communications of the control messages, and controlling the speed of the vehicle during anomalous communications using the future speed commands.

14 Claims, 20 Drawing Sheets

Field	Interpretation	Typical Use
Speed delta_1	Change from the current Command Speed anticipated at a distance equal to (25%) of the Length of Speed Profile measured from the current location	Initial coasting or slight deceleration if communications recovers, the motion will not be disruptive
Speed delta_2	Change from the current Command Speed anticipated at a distance equal to (50%) of the Length of Speed Profile measured from the current location	Transition to significant slowing
Speed delta_3	Change from the current Command Speed anticipated at a distance equal to (75%) of the Length of Speed Profile measured from the current location	Transition to significant slowing
Speed delta_4	Change from the current Command Speed anticipated at a distance equal to (100%) of the Length of Speed Profile measured from the current location	Complete stop for fail- safe maneuver (which would be the inverse of the current Command Speed)

^{*} cited by examiner